PN diode example (1D): Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 10: | Line 10: | ||
Create 1D structure - [[PN diode example 1D - Create 1D structure explanation | explanation]] | Create 1D structure - [[PN diode example 1D - Create 1D structure explanation | explanation]] | ||
#Grid | #Grid | ||
line x loc=0.0 spac=0.1 tag=Top | line x loc=0.0 spac=0.1 tag=Top | ||
line x loc=0.5 spac=0.01 | line x loc=0.5 spac=0.01 | ||
line x loc=1.0 spac=0.1 tag=Bottom | line x loc=1.0 spac=0.1 tag=Bottom | ||
mater add name=Silicon | mater add name=Silicon | ||
region Silicon xlo=Top xhi=Bottom | region Silicon xlo=Top xhi=Bottom | ||
Line 49: | Line 44: | ||
sel z=1.0e17 name=Na | sel z=1.0e17 name=Na | ||
sel z=(Nd-Na) name=Doping | sel z=(Nd-Na) name=Doping | ||
#plot doping | #plot doping | ||
sel z=Doping | sel z=Doping | ||
plot.1d | plot.1d symb=1 | ||
Bulk Equations | Bulk Equations | ||
set eqnP "$eps * grad(DevPsi) + | set eqnP "$eps * grad(DevPsi) + Doping - Elec + Hole" | ||
set eqnE "ddt(Elec) - ($Emob) * $Vt * sgrad(Elec, DevPsi/$Vt)" | set eqnE "ddt(Elec) - ($Emob) * $Vt * sgrad(Elec, DevPsi/$Vt)" | ||
set eqnH "ddt(Hole) - ($Hmob) * $Vt * sgrad(Hole, -DevPsi/$Vt)" | set eqnH "ddt(Hole) - ($Hmob) * $Vt * sgrad(Hole, -DevPsi/$Vt)" | ||
Line 63: | Line 56: | ||
pdbSetString Silicon Elec Equation $eqnE | pdbSetString Silicon Elec Equation $eqnE | ||
pdbSetString Silicon Hole Equation $eqnH | pdbSetString Silicon Hole Equation $eqnH | ||
pdbSetDouble Silicon DevPsi DampValue $Vt | pdbSetDouble Silicon DevPsi DampValue $Vt | ||
pdbSetDouble Silicon DevPsi Abs.Error 1.0e-9 | pdbSetDouble Silicon DevPsi Abs.Error 1.0e-9 | ||
Line 71: | Line 64: | ||
Contact Equations | Contact Equations | ||
proc OhmicContact {Contact} { | proc OhmicContact {Contact} { | ||
global Vt ni | global Vt ni | ||
pdbSetBoolean $Contact Elec Flux 1 | pdbSetBoolean $Contact Elec Flux 1 | ||
pdbSetBoolean $Contact Hole Flux 1 | pdbSetBoolean $Contact Hole Flux 1 | ||
Line 80: | Line 73: | ||
pdbSetDouble $Contact Elec Flux.Scale 1.619e-19 | pdbSetDouble $Contact Elec Flux.Scale 1.619e-19 | ||
pdbSetDouble $Contact Hole Flux.Scale 1.619e-19 | pdbSetDouble $Contact Hole Flux.Scale 1.619e-19 | ||
pdbSetString $Contact DevPsi Equation " | pdbSetString $Contact DevPsi Equation "Nd - Na - Elec + Hole" | ||
pdbSetString $Contact Elec Equation "DevPsi - $Vt*log((Elec)/$ni) -$Contact" | pdbSetString $Contact Elec Equation "DevPsi - $Vt*log((Elec)/$ni) -$Contact" | ||
pdbSetString $Contact Hole Equation "DevPsi + $Vt*log((Hole)/$ni) -$Contact" | pdbSetString $Contact Hole Equation "DevPsi + $Vt*log((Hole)/$ni) -$Contact" | ||
Line 91: | Line 84: | ||
contact name=VSS voltage supply=0.0 | contact name=VSS voltage supply=0.0 | ||
contact name=GND voltage supply=0.0 | contact name=GND voltage supply=0.0 | ||
#Initial Guess | #Initial Guess | ||
sel z= {(Doping>0.0) | sel z= {(Doping>0.0) | ||
Line 101: | Line 94: | ||
1st DC Solve at Equilibrium (0V) | 1st DC Solve at Equilibrium (0V) | ||
device | device | ||
puts "Electron Flux [contact name= | puts "Electron Flux [contact name=VSS sol=Elec flux]" | ||
puts "Hole Flux [contact name= | puts "Hole Flux [contact name=VSS sol=Hole flux]" | ||
#Plot the equilibrium concentration profiles | #Plot the equilibrium concentration profiles | ||
foreach var {Doping Elec Hole} { | foreach var {Doping Elec Hole} { | ||
Line 113: | Line 106: | ||
#initialize an array, bias (Vb) and counter (i), and create and new graph window | #initialize an array, bias (Vb) and counter (i), and create and new graph window | ||
array set curr {} | array set curr {} | ||
set Vb 0.0 | #set Vb 0.0 | ||
set i 1 | set i 1 | ||
#Ramp from 0.0-1.2V and Plot | #Ramp from 0.0-1.2V and Plot | ||
for {set | set Win [CreateGraphWindow] | ||
for {set bias 0.0} {$bias < 1.2} {set bias [expr $bias+0.05]} { | |||
set Vbias($i) -$ | set Vbias($i) -$bias | ||
incr i | |||
contact name=VSS supply=-$bias | |||
device init | device init | ||
set curr($i) [expr ([contact name= | |||
set curr($i) [expr ([contact name=VSS sol=Elec flux] - [contact name=VSS sol=Hole flux])] | |||
sel z=log10(abs(Hole)+1.0) | |||
plot.1d !cle | plot.1d !cle | ||
AddtoLine $Win IV -$ | |||
AddtoLine $Win IV -$bias $curr($i) | |||
} | } | ||
Get the last few points on the IV curve to use for linear extrapolation of the built-in voltage | #Get the last few points on the IV curve to use for linear extrapolation of the built-in voltage | ||
set l [list "$Vbias(24)" "$curr(24)" "$Vbias(23)" "$curr(23)" "$Vbias(22)" "$curr(22)" ] | set l [list "$Vbias(24)" "$curr(24)" "$Vbias(23)" "$curr(23)" "$Vbias(22)" "$curr(22)" ] | ||
Fit the data points with "Bestline". The output will give the x-intercept or built-in voltage | #Fit the data points with "Bestline". The output will give the x-intercept or built-in voltage | ||
Bestline $l | Bestline $l | ||
Create a "fit" line to plot on top of IV curve using the data points and "Bestline" x-intercept result | #Create a "fit" line to plot on top of IV curve using the data points and "Bestline" x-intercept result | ||
set line [list "$Vbias(24)" "$curr(24)" "$Vbias(23)" "$curr(23)" "$Vbias(22)" "$curr(22)" 0.9998 0] | set line [list "$Vbias(24)" "$curr(24)" "$Vbias(23)" "$curr(23)" "$Vbias(22)" "$curr(22)" 0.9998 0] | ||
CreateSingleLine $Win Vbi_fit $line | CreateSingleLine $Win Vbi_fit $line |
Revision as of 19:44, 5 November 2010
This example builds on the 1D resistor example, showing how to create a floods structure with a doping profile that varies with x. After solving, the example compares floods's numerical results with an analytical solution.
New Concepts
- refining the grid with non-tagged lines
- Doping=f(x) : use "sel z="
- "sel z=" if-then-else syntax (?:)
- tcl "foreach"
1D PN Diode Deck
Create 1D structure - explanation
#Grid line x loc=0.0 spac=0.1 tag=Top line x loc=0.5 spac=0.01 line x loc=1.0 spac=0.1 tag=Bottom mater add name=Silicon region Silicon xlo=Top xhi=Bottom init #Contacts contact name=VSS Silicon xlo=-0.1 xhi=0.1 add contact name=GND Silicon xlo=0.9 xhi=1.1 add
Declare solution variables
DevicePackage solution add name=DevPsi pde solve negative damp solution add name=Elec pde solve !negative solution add name=Hole pde solve !negative
Define constants
set T 300.0 set k 1.38066e-23 set q 1.619e-19 set Vt [expr {$k*$T/$q}] set ni 1.1e10 set esi [expr 11.8 * 8.85418e-14] set eps [expr $esi / $q] set Emob 350.0 set Hmob 150.0 set small 1.0e-10
Ionized dopant profile - explanation
sel z=1.0e20*(x<0.5) name=Nd sel z=1.0e17 name=Na sel z=(Nd-Na) name=Doping #plot doping sel z=Doping plot.1d symb=1
Bulk Equations
set eqnP "$eps * grad(DevPsi) + Doping - Elec + Hole" set eqnE "ddt(Elec) - ($Emob) * $Vt * sgrad(Elec, DevPsi/$Vt)" set eqnH "ddt(Hole) - ($Hmob) * $Vt * sgrad(Hole, -DevPsi/$Vt)" pdbSetString Silicon DevPsi Equation $eqnP pdbSetString Silicon Elec Equation $eqnE pdbSetString Silicon Hole Equation $eqnH pdbSetDouble Silicon DevPsi DampValue $Vt pdbSetDouble Silicon DevPsi Abs.Error 1.0e-9 pdbSetDouble Silicon Elec Abs.Error 1.0e-5 pdbSetDouble Silicon Hole Abs.Error 1.0e-5
Contact Equations
proc OhmicContact {Contact} { global Vt ni pdbSetBoolean $Contact Elec Flux 1 pdbSetBoolean $Contact Hole Flux 1 pdbSetBoolean $Contact DevPsi Flux 1 pdbSetBoolean $Contact Elec Fixed 1 pdbSetBoolean $Contact Hole Fixed 1 pdbSetBoolean $Contact DevPsi Fixed 1 pdbSetDouble $Contact Elec Flux.Scale 1.619e-19 pdbSetDouble $Contact Hole Flux.Scale 1.619e-19 pdbSetString $Contact DevPsi Equation "Nd - Na - Elec + Hole" pdbSetString $Contact Elec Equation "DevPsi - $Vt*log((Elec)/$ni) -$Contact" pdbSetString $Contact Hole Equation "DevPsi + $Vt*log((Hole)/$ni) -$Contact" } OhmicContact VSS OhmicContact GND
Initial Conditions - explanation
#Bias contacts contact name=VSS voltage supply=0.0 contact name=GND voltage supply=0.0 #Initial Guess sel z= {(Doping>0.0) ? ( 0.025*log( (Doping+$small) / $ni)) : (-0.025*log(-(Doping+$small) / $ni))} name = DevPsi sel z=$ni*exp(DevPsi/$Vt) name=Elec sel z=$ni*exp(-DevPsi/$Vt) name=Hole
1st DC Solve at Equilibrium (0V)
device puts "Electron Flux [contact name=VSS sol=Elec flux]" puts "Hole Flux [contact name=VSS sol=Hole flux]" #Plot the equilibrium concentration profiles foreach var {Doping Elec Hole} { sel z=log10(abs($var+1.0)) plot.1d !cle }
Ramp the DC Bias to make I-V plot
#initialize an array, bias (Vb) and counter (i), and create and new graph window array set curr {} #set Vb 0.0 set i 1 #Ramp from 0.0-1.2V and Plot set Win [CreateGraphWindow] for {set bias 0.0} {$bias < 1.2} {set bias [expr $bias+0.05]} { set Vbias($i) -$bias incr i contact name=VSS supply=-$bias device init set curr($i) [expr ([contact name=VSS sol=Elec flux] - [contact name=VSS sol=Hole flux])] sel z=log10(abs(Hole)+1.0) plot.1d !cle AddtoLine $Win IV -$bias $curr($i) } #Get the last few points on the IV curve to use for linear extrapolation of the built-in voltage set l [list "$Vbias(24)" "$curr(24)" "$Vbias(23)" "$curr(23)" "$Vbias(22)" "$curr(22)" ] #Fit the data points with "Bestline". The output will give the x-intercept or built-in voltage Bestline $l #Create a "fit" line to plot on top of IV curve using the data points and "Bestline" x-intercept result set line [list "$Vbias(24)" "$curr(24)" "$Vbias(23)" "$curr(23)" "$Vbias(22)" "$curr(22)" 0.9998 0] CreateSingleLine $Win Vbi_fit $line
In forward bias (negative voltage applied to the top (n-type) contact), the output IV plot with the absolute value of the built-in voltage equal to 0.9998 is shown below. The built in voltage calculated by the equation Vbi=Vt*ln((Nd*Na)/ni^2) is 0.9786.