PN diode example (2D): Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
* plotting a solution variable in 1d on a 2d structure | * plotting a solution variable in 1d on a 2d structure | ||
== | == 2D PN Diode Deck == | ||
Create | Create 2D structure - the text in bold are the only changes from the 1D PN diode deck | ||
#Grid | #Grid | ||
line x loc=0.0 spac=0.1 tag=Top | line x loc=0.0 spac=0.1 tag=Top | ||
Line 39: | Line 39: | ||
set small 1.0e-10 | set small 1.0e-10 | ||
Ionized dopant profile | Ionized dopant profile | ||
sel z=1.0e20*(x<0.5) name=Nd | sel z=1.0e20*(x<0.5) name=Nd | ||
sel z=1.0e17 name=Na | sel z=1.0e17 name=Na | ||
Line 79: | Line 79: | ||
OhmicContact GND | OhmicContact GND | ||
Initial Conditions | Initial Conditions | ||
#Bias contacts | #Bias contacts | ||
contact name=VSS voltage supply=0.0 | contact name=VSS voltage supply=0.0 | ||
Line 96: | Line 96: | ||
puts "Hole Flux [contact name=VSS sol=Hole flux]" | puts "Hole Flux [contact name=VSS sol=Hole flux]" | ||
Plot the equilibrium concentration profiles at a specific y location | |||
foreach var {Doping Elec Hole} { | foreach var {Doping Elec Hole} { | ||
sel z=log10(abs($var+1.0)) | sel z=log10(abs($var+1.0)) |
Revision as of 02:37, 19 November 2010
New Concepts
- adding another dimension to the structure
- plotting a solution variable in 1d on a 2d structure
2D PN Diode Deck
Create 2D structure - the text in bold are the only changes from the 1D PN diode deck
#Grid line x loc=0.0 spac=0.1 tag=Top line x loc=0.5 spac=0.01 line x loc=1.0 spac=0.1 tag=Bottom line y loc=-1.0 spac=0.1 tag=Lside line y loc=1.0 spac=0.1 tag=Rside
mater add name=Silicon region Silicon xlo=Top xhi=Bottom ylo=Lside yhi=Rside init #Contacts contact name=VSS Silicon xlo=-0.1 xhi=0.1 add contact name=GND Silicon xlo=0.9 xhi=1.1 add
Declare solution variables
DevicePackage solution add name=DevPsi pde solve negative damp solution add name=Elec pde solve !negative solution add name=Hole pde solve !negative
Define constants
set T 300.0 set k 1.38066e-23 set q 1.619e-19 set Vt [expr {$k*$T/$q}] set ni 1.1e10 set esi [expr 11.8 * 8.85418e-14] set eps [expr $esi / $q] set Emob 350.0 set Hmob 150.0 set small 1.0e-10
Ionized dopant profile
sel z=1.0e20*(x<0.5) name=Nd sel z=1.0e17 name=Na sel z=(Nd-Na) name=Doping #plot doping #sel z=Doping #plot.1d symb=1
Bulk Equations
set eqnP "$eps * grad(DevPsi) + Doping - Elec + Hole" set eqnE "ddt(Elec) - ($Emob) * $Vt * sgrad(Elec, DevPsi/$Vt)" set eqnH "ddt(Hole) - ($Hmob) * $Vt * sgrad(Hole, -DevPsi/$Vt)" pdbSetString Silicon DevPsi Equation $eqnP pdbSetString Silicon Elec Equation $eqnE pdbSetString Silicon Hole Equation $eqnH pdbSetDouble Silicon DevPsi DampValue $Vt pdbSetDouble Silicon DevPsi Abs.Error 1.0e-9 pdbSetDouble Silicon Elec Abs.Error 1.0e-5 pdbSetDouble Silicon Hole Abs.Error 1.0e-5
Contact Equations
proc OhmicContact {Contact} { global Vt ni pdbSetBoolean $Contact Elec Flux 1 pdbSetBoolean $Contact Hole Flux 1 pdbSetBoolean $Contact DevPsi Flux 1 pdbSetBoolean $Contact Elec Fixed 1 pdbSetBoolean $Contact Hole Fixed 1 pdbSetBoolean $Contact DevPsi Fixed 1 pdbSetDouble $Contact Elec Flux.Scale 1.619e-19 pdbSetDouble $Contact Hole Flux.Scale 1.619e-19 pdbSetString $Contact DevPsi Equation "Nd - Na - Elec + Hole" pdbSetString $Contact Elec Equation "DevPsi - $Vt*log((Elec)/$ni) -$Contact" pdbSetString $Contact Hole Equation "DevPsi + $Vt*log((Hole)/$ni) -$Contact" } OhmicContact VSS OhmicContact GND
Initial Conditions
#Bias contacts contact name=VSS voltage supply=0.0 contact name=GND voltage supply=0.0 #Initial Guess sel z= {(Doping>0.0) ? ( 0.025*log( (Doping+$small) / $ni)) : (-0.025*log(-(Doping+$small) / $ni))} name = DevPsi sel z=$ni*exp(DevPsi/$Vt) name=Elec sel z=$ni*exp(-DevPsi/$Vt) name=Hole
1st DC Solve at Equilibrium (0V)
device puts "Electron Flux [contact name=VSS sol=Elec flux]" puts "Hole Flux [contact name=VSS sol=Hole flux]"
Plot the equilibrium concentration profiles at a specific y location
foreach var {Doping Elec Hole} { sel z=log10(abs($var+1.0)) plot.1d y.v=0.0 !cle }
Ramp the DC Bias to make I-V plot
#initialize an array, bias (Vb) and counter (i), and create and new graph window array set curr {} #set Vb 0.0 set i 1 #Ramp from 0.0-1.2V and Plot set Win [CreateGraphWindow] for {set bias 0.0} {$bias < 1.2} {set bias [expr $bias+0.05]} { set Vbias($i) -$bias contact name=VSS supply=-$bias device init set curr($i) [expr ([contact name=VSS sol=Elec flux] - [contact name=VSS sol=Hole flux])] sel z=log10(abs(Hole)+1.0) plot.1d !cle AddtoLine $Win IV -$bias $curr($i)
incr i } #Get the last few points on the IV curve to use for linear extrapolation of the built-in voltage set l [list "$Vbias(24)" "$curr(24)" "$Vbias(23)" "$curr(23)" "$Vbias(22)" "$curr(22)" ] #Fit the data points with "Bestline". The output will give the x-intercept or built-in voltage Bestline $l #Create a "fit" line to plot on top of IV curve using the data points and "Bestline" x-intercept result set line [list "$Vbias(24)" "$curr(24)" "$Vbias(23)" "$curr(23)" "$Vbias(22)" "$curr(22)" -0.99919 0] CreateSingleLine $Win Vbi_fit $line
In forward bias (negative voltage applied to the top (n-type) contact), the output IV plot with the absolute value of the built-in voltage equal to 0.9998 is shown below. The built in voltage calculated by the equation Vbi=Vt*ln((Nd*Na)/ni^2) is 0.9786.
Full Deck Without Explanations
Copy-paste this entire deck into a file (for example, 1dpndiode.tcl) to make running it easy. Use the startup script to alias your paths to the floods executable. Then, on the BASH and then flooxs command line type:
$ floods flooxs> source 1dpndiode.tcl