Resistor example (1D): Difference between revisions

From Flooxs
Jump to navigation Jump to search
No edit summary
 
(17 intermediate revisions by 2 users not shown)
Line 1: Line 1:
This example shows how to create and simulate a simple 1D n-type resistor. After creating a 1D structure, we plot the output current as an external bias is applied. Once you run and understand this example, you should study the [[PN diode example (1D)]].
Define solution variables
 
DevicePackage
== New Concepts ==
solution name=Potential nosolve
* Creating a structure (i.e. grid) with 1 material
solution add name=DevPsi solve negative
* Declaring the 3 basic device solution variables
solution add name=Elec solve !negative
* Declaring and using tcl variables (set, expr, $), and tcl procedures
solution add name=Hole solve !negative
* Using a constant dopant profile
* Storing "Equation" strings in the parameter database (pdb)
* Initial conditions, guesses, and solves
* "Ramping," i.e. consecutive DC solves


Create 1D struture
== 1D Resistor Deck ==
  line x loc=0.0 spac=0.01 tag=Top
Create 1D struture - [[Resistor example 1D - Create 1D structure explanation | explanation]]
  line x loc=1.0 spac=0.01 tag=Bottom
#Grid
  region silicon xlo=Top xhi=Bottom
  line x loc=0.0 spac=0.1 tag=Top
  line x loc=1.0 spac=0.1 tag=Bottom
mater add name=Silicon
  region Silicon xlo=Top xhi=Bottom
  init
  init
#Contacts
contact name=VSS Silicon xlo=-0.1 xhi=0.1 add
contact name=GND Silicon xlo=0.9  xhi=1.1 add


Create contacts
Declare solution variables - [[Declare solution variables explanation | explanation]]
  contact name=VSS silicon xlo=-0.1 xhi=0.1 add
  DevicePackage
  contact name=GND silicon xlo=0.9 xhi=1.1 add
  solution add name=DevPsi pde solve negative damp
  contact name=VSS voltage supply=0.0
  solution add name=Elec  pde solve !negative
  contact name=GND voltage supply=0.0
  solution add name=Hole  pde solve !negative


Define constants
Define constants - [[Resistor example 1D - Define constants explanation | explanation]]
  set T 300
  set T 300.0
  set k 1.38066e-23
  set k 1.38066e-23
  set q 1.619e-19
  set q 1.619e-19
Line 29: Line 39:
  set Emob 350.0
  set Emob 350.0
  set Hmob 150.0
  set Hmob 150.0
set small 1.0e-10
Ionized dopant profile - [[Resistor example 1D - Ionized dopant profile explanation | explanation]]
set Nd 1.0e19
set Na 1.0e15
set Doping [expr {$Nd-$Na}]


Define Poisson's solution and continuity equations
Bulk Equations - [[Resistor example 1D - Bulk Equations explanation | explanation]]
  set eqnP "$eps * grad(DevPsi) + Doping - Elec + Hole"
  set eqnP "$eps * grad(DevPsi) + $Doping - Elec + Hole"
  set eqnE "ddt(Elec) - ($Emob) * $Vt * sgrad(Elec, DevPsi/$Vt)"
  set eqnE "ddt(Elec) - ($Emob) * $Vt * sgrad(Elec, DevPsi/$Vt)"
  set eqnH "ddt(Hole) - ($Hmob) * $Vt * sgrad(Hole, -DevPsi/$Vt)"
  set eqnH "ddt(Hole) - ($Hmob) * $Vt * sgrad(Hole, -DevPsi/$Vt)"
  pdbSetDouble Si DevPsi DampValue $Vt
  pdbSetDouble Silicon DevPsi DampValue $Vt
  pdbSetString Si DevPsi Equation $eqnP
  pdbSetString Silicon DevPsi Equation $eqnP
  pdbSetString Si Elec Equation $eqnE
  pdbSetString Silicon Elec   Equation $eqnE
  pdbSetString Si Hole Equation $eqnH  
  pdbSetString Silicon Hole   Equation $eqnH  
 
Doping profile
sel z=1.0e19 name=ND
sel z=1.0e15 name=NA
sel z=ND-NA name=Doping


Define ohmic contact equations
Contact Equations - [[Resistor example 1D - Ohmic contact procedure explanation | explanation]]
  proc ohmic.contact {Contact} {
  proc OhmicContact {Contact} {
set vt 0.02558357
    global Vt ni Nd Na
set ni 1.1e10
    pdbSetBoolean $Contact Elec Flux 1
pdbSetBoolean $Contact Elec Flux 1
    pdbSetBoolean $Contact Hole Flux 1
pdbSetBoolean $Contact Hole Flux 1
    pdbSetBoolean $Contact DevPsi Flux 1
pdbSetBoolean $Contact DevPsi Flux 1
    pdbSetBoolean $Contact Elec Fixed 1
pdbSetBoolean $Contact Elec Fixed 1
    pdbSetBoolean $Contact Hole Fixed 1
pdbSetBoolean $Contact Hole Fixed 1
    pdbSetBoolean $Contact DevPsi Fixed 1
pdbSetBoolean $Contact DevPsi Fixed 1
    pdbSetDouble $Contact Elec Flux.Scale 1.619e-19
pdbSetDouble $Contact Elec Flux.Scale 1.619e-19
    pdbSetDouble $Contact Hole Flux.Scale 1.619e-19
pdbSetDouble $Contact Hole Flux.Scale 1.619e-19
    pdbSetString $Contact DevPsi Equation "$Nd - $Na - Elec + Hole"
pdbSetString $Contact DevPsi Equation "ND - NA - Elec + Hole"
    pdbSetString $Contact Elec Equation "DevPsi - $Vt*log((Elec)/$ni) -$Contact"
pdbSetString $Contact Elec Equation "DevPsi - $vt*log((Elec)/$ni) -$Contact"
    pdbSetString $Contact Hole Equation "DevPsi + $Vt*log((Hole)/$ni) -$Contact"
pdbSetString $Contact Hole Equation "DevPsi + $vt*log((Hole)/$ni) -$Contact"
  }
  }
  ohmic.contact VSS
  OhmicContact VSS
  ohmic.contact GND
  OhmicContact GND


Initial guess procedure, assumes charge neutrality
Initial Conditions - [[Resistor example 1D - Initial conditions explanation | explanation]]
  proc InitialGuess {Doping} {
  #Bias Voltage on the Contacts
sel z= {(Doping>0.0
contact name=VSS voltage supply=0.0
? ( 0.025*log( (Doping+1.0e10) / 1.0e10))
  contact name=GND voltage supply=0.0
: (-0.025*log(-(Doping+1.0e10) / 1.0e10))} name = DevPsi
sel z=1.0e10*exp(DevPsi/0.025) name=Elec
#Initial Guess at Zero Bias
sel z=1.0e10*exp(-DevPsi/0.025) name=Hole
  sel z=($Vt*log(($Doping+$small)/$ni)) name=DevPsi
  }
sel z=$ni*exp(DevPsi/0.025) name=Elec
  InitialGuess Doping
sel z=$ni*exp(-DevPsi/0.025) name=Hole
   
  #DC Solve at Zero Bias
device


Run DC simulation and plot the current output vs. the source voltage
DC solve / plot I-V as output - [[Resistor example 1D - DC solve explanation | explanation]]
  set Win [CreateGraphWindow]
  window
  set bias 0.0
  set bias 0.0
  for {set bias 0.0} {$bias < 1.01} {set bias [expr $bias+0.1]} {
  for {set bias 0.0} {$bias < 1.01} {set bias [expr $bias+0.1]} {
Line 80: Line 93:
  device
  device
  set cur [expr abs([contact name=VSS sol=Elec flux] - [contact name=VSS sol=Hole flux])]
  set cur [expr abs([contact name=VSS sol=Elec flux] - [contact name=VSS sol=Hole flux])]
  AddtoLine $Win I $bias $cur
  chart graph=IV curve=IV xval=$bias yval=$cur
  }
  }
== Full Deck Without Explanations ==
Copy-paste [[Resistor example 1D - full deck | this entire deck]] into a file (for example, 1dres.tcl) to make running it easy. Use the [[Startup Script | startup script]] to alias your paths to the floods executable. Then, on the BASH and then flooxs command line type:
$ floods
flooxs> source 1dres.tcl
== Exercises ==
* This was an n-type resistor. Now make a p-type resistor.
* Read the [[Plotting Examples - new short version | plotting examples section]]. Use the plot.1d method to plot the electron and hole profiles on the same plot (Elec vs x and Hole vs x). Then use the [CreateGraphWindow] method to do the same thing.
* The [[PN diode example (1D) | 1D PN diode]] is next


== Notes ==
== Notes ==
This deck was successfully run by Daniel on 9/15/08 using TEC ~flooxs/linux64
This deck was successfully run by Nicole on 10/26/10 using TEC ~flooxs/linux64

Latest revision as of 14:19, 12 March 2019

This example shows how to create and simulate a simple 1D n-type resistor. After creating a 1D structure, we plot the output current as an external bias is applied. Once you run and understand this example, you should study the PN diode example (1D).

New Concepts

  • Creating a structure (i.e. grid) with 1 material
  • Declaring the 3 basic device solution variables
  • Declaring and using tcl variables (set, expr, $), and tcl procedures
  • Using a constant dopant profile
  • Storing "Equation" strings in the parameter database (pdb)
  • Initial conditions, guesses, and solves
  • "Ramping," i.e. consecutive DC solves

1D Resistor Deck

Create 1D struture - explanation

#Grid
line x loc=0.0 spac=0.1 tag=Top
line x loc=1.0 spac=0.1 tag=Bottom
mater add name=Silicon
region Silicon xlo=Top xhi=Bottom
init

#Contacts
contact name=VSS Silicon xlo=-0.1 xhi=0.1 add
contact name=GND Silicon xlo=0.9  xhi=1.1 add

Declare solution variables - explanation

DevicePackage
solution add name=DevPsi pde solve negative damp
solution add name=Elec   pde solve !negative
solution add name=Hole   pde solve !negative

Define constants - explanation

set T 300.0
set k 1.38066e-23
set q 1.619e-19
set Vt [expr {$k*$T/$q}]
set ni 1.1e10
set esi [expr 11.8 * 8.85418e-14]
set eps [expr $esi / $q]
set Emob 350.0
set Hmob 150.0
set small 1.0e-10

Ionized dopant profile - explanation

set Nd 1.0e19
set Na 1.0e15
set Doping [expr {$Nd-$Na}]

Bulk Equations - explanation

set eqnP "$eps * grad(DevPsi) + $Doping - Elec + Hole"
set eqnE "ddt(Elec) - ($Emob) * $Vt * sgrad(Elec, DevPsi/$Vt)"
set eqnH "ddt(Hole) - ($Hmob) * $Vt * sgrad(Hole, -DevPsi/$Vt)"
pdbSetDouble Silicon DevPsi DampValue $Vt
pdbSetString Silicon DevPsi Equation $eqnP
pdbSetString Silicon Elec   Equation $eqnE
pdbSetString Silicon Hole   Equation $eqnH 

Contact Equations - explanation

proc OhmicContact {Contact} {
    global Vt ni Nd Na
    pdbSetBoolean $Contact Elec Flux 1
    pdbSetBoolean $Contact Hole Flux 1
    pdbSetBoolean $Contact DevPsi Flux 1
    pdbSetBoolean $Contact Elec Fixed 1
    pdbSetBoolean $Contact Hole Fixed 1
    pdbSetBoolean $Contact DevPsi Fixed 1
    pdbSetDouble $Contact Elec Flux.Scale 1.619e-19
    pdbSetDouble $Contact Hole Flux.Scale 1.619e-19
    pdbSetString $Contact DevPsi Equation "$Nd - $Na - Elec + Hole"
    pdbSetString $Contact Elec Equation "DevPsi - $Vt*log((Elec)/$ni) -$Contact"
    pdbSetString $Contact Hole Equation "DevPsi + $Vt*log((Hole)/$ni) -$Contact"
}
OhmicContact VSS
OhmicContact GND

Initial Conditions - explanation

#Bias Voltage on the Contacts
contact name=VSS voltage supply=0.0
contact name=GND voltage supply=0.0

#Initial Guess at Zero Bias
sel z=($Vt*log(($Doping+$small)/$ni)) name=DevPsi
sel z=$ni*exp(DevPsi/0.025) name=Elec
sel z=$ni*exp(-DevPsi/0.025) name=Hole

#DC Solve at Zero Bias
device

DC solve / plot I-V as output - explanation

window
set bias 0.0
for {set bias 0.0} {$bias < 1.01} {set bias [expr $bias+0.1]} {
	contact name=VSS supply = $bias
	device
	set cur [expr abs([contact name=VSS sol=Elec flux] - [contact name=VSS sol=Hole flux])]
	chart graph=IV curve=IV xval=$bias yval=$cur
}

Full Deck Without Explanations

Copy-paste this entire deck into a file (for example, 1dres.tcl) to make running it easy. Use the startup script to alias your paths to the floods executable. Then, on the BASH and then flooxs command line type:

$ floods
flooxs> source 1dres.tcl

Exercises

  • This was an n-type resistor. Now make a p-type resistor.
  • Read the plotting examples section. Use the plot.1d method to plot the electron and hole profiles on the same plot (Elec vs x and Hole vs x). Then use the [CreateGraphWindow] method to do the same thing.
  • The 1D PN diode is next

Notes

This deck was successfully run by Nicole on 10/26/10 using TEC ~flooxs/linux64