Simulation of Radiation Effects in AlGaN/GaN High Electron Mobility Transistors

E. E. Patrick, M. Choudhury, F. Ren, S. J. Pearton, and M. E. Law

Why model / simulate?

- Predict device performance
- Optimize device performance
- Better understand underlying physical mechanisms

AlGaN/GaN HEMT DC Performance Degradation

- Reduction in mobility
- Positive threshold voltage shift
- Reduction of drain current
- Reduction of transconductance
 - Point defects create traps
 - Ionized traps create:
 - Reductions in electron mobility
 - > Negative trapped charge

➤ ↓ 2DEG density

Problem: Understand Mechanisms

E. Patrick, et al., IEEE Trans. Nucl. Sci., v. 60., no. 6, pp. 4103-4108, 2013.

Partial Ionization and/or Compensation?

Overview

Modeling Radiation (total ionizing dose) effects on AlGaN/GaN HEMTs

- Test hypothesis of ionized impurity scattering as mobility reduction
 mechanism (TRIM)
- 2. Determine sensitivity to traps in AlGaN or GaN layers (FLOODS)
- 3. Determine effect of partial trap ionization (FLOODS)
- 4. Determine effect of trap compensation (FLOODS)

Simulation Methodology

TCAD Simulator: FLOODS (Florida Object-Oriented Device Simulator)

Calculation of Partial Ionization

$$\frac{N_D^+}{N_D} = \frac{1}{1 + 2e^{\frac{E_F - E_T}{kT}}}$$

Prone to convergence issues

Trap Energy Level Spread

$$N(E) = \frac{N_D}{\nabla E \sqrt{2\pi}} e^{-\frac{(E-E_T)^2}{2\nabla E^2}}$$

$$\frac{N_D^+}{N_D} = \int \left(\frac{1}{1+2e^{\frac{E_F-E}{kT}}}\right) \left(\frac{1}{\nabla E\sqrt{2\pi}}e^{-\frac{(E-E_T)^2}{2\nabla E^2}}\right) dE$$

Fermi Energy (eV)

Numerically integrate using Gaussian-Hermite quadrature

Overview

Modeling Radiation (total ionizing dose) effects on AlGaN/GaN HEMTs

- Test hypothesis of ionized impurity scattering as mobility reduction mechanism (TRIM)
- 2. Determine sensitivity to traps in AlGaN or GaN layers (FLOODS)
- 3. Determine effect of partial trap ionization (FLOODS)
- 4. Determine effect of trap compensation (FLOODS)

Radiation-induced Defect Estimation

TRIM (Transport of lons in Matter) simulation results

V_{GA} – acceptor-like traps (-)

V_N – donor-like traps (+)

Positive V_T shift needs acceptorlike traps

Ionized Impurity Scattering Hypothesis

The Foundation for The Gator Nation Engineering

Overview

Modeling Radiation (total ionizing dose) effects on AlGaN/GaN HEMTs

- Test hypothesis of ionized impurity scattering as mobility reduction
 mechanism (TRIM)
- 2. Determine sensitivity to traps in AlGaN or GaN layers (FLOODS)
- 3. Determine effect of partial trap ionization (FLOODS)
- 4. Determine effect of trap compensation (FLOODS)

Test Acceptor Concentration and Ionization

- Radiation case:
 - 5M eV Proton radiation, fluence= 2x10¹⁴ cm⁻²
 - Ids reduction = 13%, Vt shift = 0.1 V (3%)
 - TRIM / Mobility model predict ~10¹⁷ cm⁻³ ionized acceptor traps near 2DEG
- Sensitivity Analysis
 - Uniform Acceptor Doping
 - Isolate layer
 - Vary trap concentration
 - Vary trap energy level

Acceptor Ionization

Bias conditions: V_{gs} = 0V, V_{ds} =1 V

*Polyakov, et al., J. Mater. Chem. C, 2013, 1, 877

V_{Ga} (E_v+1 eV) = fully ionized

Simulation Results: Drain Current Reduction

Simulation Results: Threshold Voltage Shift

Overview

Modeling Radiation (total ionizing dose) effects on AlGaN/GaN HEMTs

- Test hypothesis of ionized impurity scattering as mobility reduction
 mechanism (TRIM)
- 2. Determine sensitivity to traps in AlGaN or GaN layers (FLOODS)
- 3. Determine effect of partial trap ionization (FLOODS)
- 4. Determine effect of trap compensation (FLOODS)

Test Effect of Donor Compensation

- Radiation case:
 - 5M eV Proton radiation, fluence= 2x10¹⁴ cm⁻²
 - Ids reduction = 13%, Vt shift = 0.1 V (3%)
 - TRIM / Mobility model predict ~10¹⁷ cm⁻³ ionized acceptor traps near 2DEG
- Sensitivity Analysis
 - Donors
 - Vary trap energy level
 - Vary trap concentration

Effect of Donor Compensation

- 10¹⁷/cm³ uniform acceptor doping throughout GaN
- N_D= 10¹⁷/cm³ donor compensation in GaN using partial ionization

I_{ds} Reduction – Simulation Matches Experimental

The Foundation for The Gator Nation

Vt Shift- Simulation Matches Experimental

The Foundation for The Gator Nation

Negative Space Charge Confinement

Conclusions

- Hypothesis of ionized impurity scattering as mobility reduction mechanism is confirmed
- 2. Performance is much less sensitive to traps in AlGaN
- Acceptor traps at E_v+1 eV are effectively ionized throughout GaN
- 4. Confinement of negative trapped charge near 2DEG is due to compensation of Acceptor traps by Donor → determines amount of DC performance degradation

- Identify donor trap lifetimes
- Simulate RF performance degradation due to radiation

