Fundamental Modeling of Radiation Effects in AlGaN/GaN HEMTs

E. E. Patrick, M. E. Law, S. Li, Y-H. Hwang, F. Ren, and S. J. Pearton

Ionizing Radiation Sources

Image Credit: NASA.

- 1. Radiation from solar flares x-rays, gamma-rays, protons, electrons
- Galactic cosmic radiation
 85% protons, 14% alpha particles, 1% heavy ions

Radiation in Low Earth Orbit

Van Allen belts

(a)

Inner belt - extends to 2.5 Earth radii

• protons up to 600 MeV and electrons up to several MeV

Outer belt - out to 10 Earth radii.

electrons and protons (0.1 to 5 MeV)

"Hacking the Van Allen Belts" IEEE Spectrum, Feb, 2014

Copyright @ Addison Wesley Longman, Inc.

Overview

Radiation (total ionizing dose) effects on AlGaN/GaN HEMTs using FLOODS

1. Modeling device degradation

2. Modeling reasons behind unexpected reliability enhancement from radiation

Radiation-Induced Damage

- Electron-hole pair generation
- Proton, electron, gamma-ray irradiation
 - Point defects
 - Frenkel pairs
 - Ga vacancy (V_{Ga}) , Ga interstitial (Ga_i) N vacancy (V_N) , N interstitial (N_i)
 - Modification of existing defects
 - Dehydrogenation of defect complexes

AlGaN/GaN HEMT Performance Degradation

AlGaN/GaN HEMT Performance Degradation

Irradiation Dose (cm ⁻²)	I _{DSS} (mA/mm)	Reduction of Sheet Carrier Concentration (%)	Reduction of Mobility (%)	Carrier Removal Rate (cm ⁻¹)	ΔV_{th} (mV)	Δg _m (%)	Reverse Gate Leakage at $V_G = -5V$ and $V_{DS} = 5V$ (μ A/mm)
5×10 ⁹	726	0	0	-	0	0	3.6
5×10^{10}	725	0	0	-	0	0	3.8
2×10^{12}	725	0	3	-	0	0	3.5
2×10^{13}	716	1	7	850	10	5	5.6
2×10^{14}	630	10	41	810	95	10	8.1

5 MeV Proton irradiation

Fluences below $2x10^{14}$ /cm² have little effect on performance metrics

- radiation-induced defects in GaN buffer are on the same order of magnitude of as-grown defects

Displacement-Related Trap Creation

Radiation-induced Defect Estimation

The Foundation for The Gator Nation

TRIM (Transport of Ions in Matter) simulation results

V_{GA} – acceptor-like traps (-)

 V_N – acceptor or donor-like traps (+)

Positive V_T shift needs acceptorlike traps

Modeling Threshold Voltage Shift

Role of Trap Ionization

Modeling Mobility Reduction

Modeling Mobility Reduction

lateral distance (µm)

AlGaN/GaN HEMT Reliability Enhancement

Irradiation Dose (cm ⁻²)	Drain Breakdown Voltage V_{BR} (V)	Critical Voltage, V _{cri} (V)
Pristine	30	22
10	31	23
5×10	30	22
5×10	29	22
2×10 ¹²	31	23
2×10 ¹³	36	28
2×10 ¹⁴	41	32

5 MeV Proton irradiation

Pit-shaped defect

S. Y. Park et al., "Correlation between Physical Defects and Performance in AlGaN GaN," *Trans. Electrical and Electronic Materials*, vol. 11, no. 2 p.49-53, April 2010.

Gate-Diffusion Defect Formation

Pit-Shaped Defect Formation:

- Piezoelectric material \rightarrow high localized electric and strain fields (near gate / drain edge)
- Strain-enhanced gate metal diffusion

Kuball, M et al Microelectronics Reliability 51 2011 pp:195–200

Ren, F et al. JVST B 5 Microelectronics and Nanometer structures Apr 2011

Virtual Gate in GaN Buffer?

- **Hypothesis I:** Acceptor-like traps in the **GaN buffer =** virtual gate
- Floods Test: Peak electric field values (5 nm into AlGaN) show ~1% change for post-irradiation simulation (need 40% reduction to match experiments)

Virtual Gate in GaN Buffer

- **Hypothesis I:** Acceptor-like traps in the **GaN buffer =** virtual gate
- Floods Test: Peak electric field values (5 nm into AlGaN) show ~1% change for post-irradiation simulation

• Hypothesis I is unlikely: Need a Vth shift ~1V for 30% e-field reduction

Virtual Gate at SiN/AlGaN Interface

Virtual Gate at SiN/AlGaN Interface

• **Hypothesis II:** Acceptor-like traps in the **SiN/AlGaN interface** = virtual gate

Peak electric field values (5 nm into AlGaN) show 10 to 50% change for various sheet charge densities (4% = 8×10¹² /cm-2)

Virtual Gate at SiN/AlGaN Interface

- The Id-Vg curves do not change much with the nitride charging.
- Hypothesis II is plausible.

Nature of SiN/AlGaN Charging?

- Electron/hole pair generation
 - 2×10^{16} (pairs/cm³-s) calculated by TRIM

Nature of Nitride/AlGaN Charging?

The Foundation for The Gator Nation

Nature of Nitride/AlGaN Charging?

- Mobile defect-related trap states that agglomerate at Nitride/AlGaN interface
 - Maybe assisted by electron cloud

Summary

- GaN-based devices are robust to irradiation
- DC device degradation can be modeled by negative trapped charge near 2DEG
- Enhanced reliability can be modeled by negative trapped charge at SiN/AlGaN interface
 - Reduces peak electric field
 - Mechanism unclear

Funding source: DTRA, AFRL

