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Why model / simulate?

e Predict device performance

e Optimize device performance

e Better understand underlying physical

mechanisms

— Effect of radiation-induced traps
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AlGaN/GaN HEMT Degradation by Point Defects

Q0 @ 0 0 0 0

Sourcel I Drain
O © © © © O
o o o o

° V
000000 Vi

© 0 o0 o o VN

» Point defects create traps
» lonized traps create:

» Reductionin electron
mobility (impurity
scattering model)

» Negative trapped charge
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*Polyakov, etal. J. Mater. Chem. C, 2013, 1, 877-887.



Translation to Performance Degradation

DC Simulation

Positive threshold voltage shift
Reduction of drain current

Small Signal AC Simulation

Reduction of peak transconductance

*Luo,, etal., ). Vac. Sci. Technol. B, Vol. 31, No. 4,
2013.

AC Simulation - RF
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Trapping Mechanism
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Simulation Goals

e Extent of DC performance has a dependence on donor
compensation

e Q. Whatis the dependence of donor traps (static or
dynamic) to RF performance degradation?

Talk Outline
1. Simulation methodology

2. What we learned from DC
simulation studies

3. Small signal and RF simulation
results: Effect of static and
dynamic donor traps




Simulation Methodology

TCAD Simulator: FLOODS

(FLorida Object-Oriented Device Simulator)
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Device Equations

V2¢=—g[p—n+Doping+Trap]
on 1V dp 1V
Er Jn) Err] Jp

Jn = —qUuanVoy, ]p = Qﬂnpv¢p



Simulation Methodology

Treatment of donor traps
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Simulation Methodology

Small Signal AC analysis

Sinusoidal steady-state analysis (S3A) 75 = Ny + nSSef“”

For small-signal AC input, device response assumed to be linear around DC
bias point.

J+iDX=B for computation [ l]) —] D] [))(( 1;] _ [g]

J: Jacobian at DC bias point

D: Diagonal matrix with frequency w as diagonal elements
B: Small-signal boundary conditions at contacts
Xz, X : Realand Imaginary solution variables




Overview

Modeling Radiation (total ionizingdose) effects
on AlGaN/GaN HEMTs

1. Simulation methodology

2. What did we learn from DC
simulation studies

3. Small signal and RF simulation
results: Effect of dynamic donor
traps



Radiation-induced Defect Estimation
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Mobility Reduction: lonized Impurity Scattering

Reduction in Mobility (%)
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Test Effect of Donor Compensation

e Radiation case:
— 5M eV Proton radiation, fluence= 2x1014 cm
e |ds reduction =13%, Vt shift =0.1V (3%)

— TRIM / Mobility model predict ~10 cm=3ionized
acceptor traps near 2DEG

:F

e Sensitivity Analysis
— Donors

e Vary trap concentration
e Static acceptor concentration




|4 Reduction — Need for Donor Compensation
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Vt Shift-Need for Donor Compensation
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Negative Space Charge Confinement

Magnitude of Total lonized
Acceptor Traps (cm-3)
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Conclusions From DC Simulation

Hypothesis of ionized impurity 000000000 — 0
: - : & 2 000 —00O0O0O0O0
scattering as mobility reduction 000000 —0000

mechanism is confirmed

Performance is much less sensitive to \
traps in AlIGaN

Acceptor traps at E,+1 eV are effectively Gate

ionized throughout GaN >S IS'N >IN I D
o ANGEANTT TS

Confinement of negative trapped

charge near 2DEG s due to GaN

compensation of Acceptor traps by
Donor =» determines amount of DC /
performance degradation




Overview

Modeling Radiation (total ionizingdose) effects
on AlGaN/GaN HEMTs

1. Simulation methodology

2. What did we learn from DC
simulation studies

3. Small signal and RF simulation
results: Effect of dynamicdonor

traps



AC Simulation Results
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Role of Donor Compensationon g,
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g Dependence on Acceptor Trap Concentration
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Role of Donor Trap Dynamics on G,
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Current Gain v. Frequency

V=5V
Vg = peak g, voltage
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Degradation in Cutoff Frequency, f;

Normalized f;
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Conclusions

Incorporated small signal and RF simulation
capability in FLOODS

Looked at the role of donor traps in the GaN buffer in
AC simulations

* Donortraps do not greatly effect peak g,
 Dominant effect is from static acceptor traps

* Dynamic donortraps also do not greatly affect RF
metrics

 RF Experimental results are well captured by
including static acceptors

Future work: Explore the role of surface trapsin AC
simulations and transient Gate-lag simulations



