Simulation of the pH Sensing Capability of an Open-Gate GaN-based Transistor

M. Sciullo, E. E. Patrick, and M. E. Law

GaN HEMT Biosensor Technology

Source: bccResearch, Global Markets and Technologies for Sensors, Published: April 2013 bccResearch Report Code: IAS006E

- Mature experimental studies
- No existing commercial software package for this purpose
- Need for sensor optimization via simulation

Approach

- Simulation of pH Sensor
- Using FLorida Object-Oriented Device Simulator (FLOODS)

Physics

Bulk Semiconductor	Contacts	Bulk Electrolyte	Electrolyte/Semiconductor Interface
Electron/hole transport	Source /Drain - Ohmic	lon transport	Surface reactions
Electrostatic potential		Electrostatic potential	Adsorbed molecular charge
Polarization charge			

Approach: Bulk Electrolyte

Approach: Bulk Semiconductor

Conservation of Charge (Poisson Eq.)

 $\varepsilon \nabla^2 \psi = q(n - p + N_D - N_A)$

Mass Balance (Continuity Eq.)

$$\frac{dn}{dt} = -nq\mu_n \nabla^2 \phi_{f_n}$$

$$\frac{dp}{dt} = pq\mu_p \nabla^2 \phi_{f_p}$$

$$n = N_c e^{-(E_c - \phi_{fn})/V_t}$$

$$p = N_{\nu} e^{-(\phi_{fp} - E_{\nu})/V_t}$$

The Foundation for The Gator Nation

Approach: Double Layer / Oxide / Nitride

Approach: Surface Adsorption

Site-binding Model (oxide/electrolyte interface)

 $SOH_2^+ \rightleftharpoons SOH + H^+$ $SOH \rightleftharpoons SO^- + H^+$ $\frac{d[SOH_2^+]}{dt} = K_1(N_s - [H^+]) - K_2[H^+]$ $\frac{d[SO^-]}{dt} = K_3(N_s - [H^+]) - K_3[H^+]$

$$[SO^-] = N_S - [SOH_2^+]$$

- \vee = neutral surface site
- = hydrogenion
- = other ions

Boundary Conditions

Dirchlet BC: [Na], [Cl], [H], [A] = fixed

pH Sensor Simulation Results

Double layer only, V_{ds} = 5 V

Theoretical Nernstian sensitivity ψ_0 = 2.303 kT/q Δ pH = 59.2 mV/pH

pH Sensor Simulation Results

Effect of oxide layers

Need for 2-D Simulation

Double layer only, V_{ds} = 5 V

Results for a 1 μm gate device

"Gate" Length Trend

Double layer only, V_{ds} = 5 V

Effect of Drain Bias (Vds=2 V)

Effect of Drain Bias (Vds = 5 V)

Summary

- Mathematical framework for simulation of AlGaN/GaN-based Biosensors
- First simulation of 2-D effects
 - Important for high bias conditions
- Trends
 - Higher sensitivity for higher drain bias
 - May be limited by velocity saturation of carriers (future work)
 - Higher sensitivity for longer "gate" length

